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ABSTRACT 
We describe a certification approach for software development 
that has been adopted at our organization. JPL develops robotic 
spacecraft for the exploration of the solar system. The flight 
software that controls these spacecraft is considered to be mission 
critical. We argue that the goal of a software certification process 
cannot be the development of “perfect” software, i.e., software 
that can be formally proven to be correct under all imaginable and 
unimaginable circumstances. More realistically, the goal is to 
guarantee a software development process that is conducted by 
knowledgeable engineers, who follow generally accepted 
procedures to control known risks, while meeting agreed upon 
standards of workmanship. We target three specific issues that 
must be addressed in such a certification procedure: the coding 
process, the code that is developed, and the skills of the coders. 
The coding process is driven by standards. The code is 
mechanically checked against the standards with the help of state-
of-the-art static source code analyzers. The coders, finally, are 
certified in on-site training courses that include formal exams.  

Categories and Subject Descriptors 
D.2.0 [Software Engineering]: General – standards. K.5.2. 
[Governmental Issues]: – Regulation. K.7.3: [The Computing 
Profession]: Certification, Licensing and Testing. 

General Terms 
Design, Reliability, Standardization, Verification, Legal Aspects. 

Keywords 
Coding standards, code review, static source code analysis, logic 
model checking, unit testing, safety- and mission-critical software. 

 

1. INTRODUCTION 
John Rushby once described the dilemma of current approaches to 
software verification or certification as follows: “Because we 
cannot demonstrate how well we've done, we'll show how hard 
we've tried.” [1]. The statement is apt. Few, if any, organizations 
feel confident enough about their software development processes 
that they are willing to give an absolute guarantee of its fitness for 
use or so much as the absence of preventable flaws in 
workmanship. 

 As customers, and generally as users that have to rely on the 
safety and reliability of sometimes critically important software 
applications (e.g., as used by banks, car makers, or in medical 

devices), we are quite used to the opposite: we are routinely asked 
to sign disclaimers that hold the software makers invulnerable to 
flaws in workmanship and all possible damage that might be 
caused by it. This in itself is remarkable.  

At some point, perhaps a few decades ago, we may have expected 
that standard market principles would solve this problem: 
customers could have been expected to reject products that are 
delivered without warranties of fitness. But this is not what 
happened. 

The driving principles that determine how software applications 
are developed and marketed give a significant advantage to the 
vendor who delivers a new service first, and merely commits to 
slowly improve while the product is in use, based on customer 
feedback. The customers, in this way, become part of what 
otherwise would be the testers, except this group of testers pays 
the vendor, instead of the reverse. As unsettling as this might be 
from a philosophical point of view, it works quite well for the vast 
majority of software products sold today.  

A clear exception holds for the category of safety-critical and 
mission-critical software applications (the distinction is whether a 
system failure may result in death/serious injury to people versus 
loss of mission). Most will agree that different rules must apply 
here, since for these types of applications it cannot be considered 
acceptable for a vendor to decline all responsibility for the 
potential damage caused in return for a mere commitment to fix 
any problems not caught in the software development process 
until after they have manifested themselves to end-users. If we 
now look more carefully at which different rules are applied in 
these cases, we are in for a surprise. In many cases there are no 
software certification requirements, and those requirements that 
do exist can only be described as modest. Organizations are often 
only asked to show “how hard they’ve tried” and not that certain 
standards of workmanship are met. 

As part of our research and work, we have inevitably gained 
experience with the analysis of many software products that are 
considered critical. At JPL this naturally includes the analysis of 
the control software for interplanetary spacecraft, but we have 
also been involved in a broad range of other types of safety-
critical applications, including the investigation of specific aspects 
of automotive software (e.g., in the context of a study of the 
potential for sudden unintended acceleration of Toyota vehicles in 
2010), medical device software, software used in the shutdown 
systems of nuclear power plants, railway signaling protocol 
software, etc.  

NASA’s shuttle software [2] is often mentioned as an example of 
how critical software systems can reach a high level of safety and 
reliability. This software indeed has an exemplary track record of 
having a low residual fault density rate over the approximately 
three decades of use. Like any other human design, it is, of course, 
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not completely free from defects, nor can it be expected to be. 
One could well say that the first principle adopted in the design of 
any system that is meant to be reliable is the recognition that no 
single system component can be perfect: every part has breaking 
points, some known and some unknown. Reliability and safety, 
therefore should be treated as system properties, not component 
properties. To complete the argument, in almost all cases of 
interest the software is merely one component in a larger system 
that includes also hardware and human operators as essential 
elements. 

The software used for commercial airplanes, similarly, has an 
enviable track record for reliability. Again, the track record is not 
for perfection, because in any sufficiently complex system there 
are always residual defects that are discovered only after a system 
is delivered and goes into operation. The goal for certified 
software, therefore, cannot be to put a process in place that 
guarantees correctness under all circumstances – the goal is to 
produce a safe and reliable system that is build by competent, 
well-trained developers, following a process that controls risks 
and meets the evolving standard of skilled workmanship. In one 
sentence here, then we touch on three separate targets for a 
software certification process: the coding process that is followed, 
the code, and the coders. The certification process that is followed 
in the aerospace industry (e.g., for software used to control 
commercial airplanes), targets primarily the coding process, e.g. 
with standards such as DO-178B [3]. There are no strict 
requirements here for the use of specific verification tools, or for 
the certification of software developers themselves. The target is 
only to secure that due diligence was used in the development 
process itself. 

 

2. CERTIFICATION PROCESS 
At JPL, in the development of the control software for 
interplanetary spacecraft, such as the Mars Exploration Rovers 
[4], we have adopted a different process. The intent of this process 
is to subject not just the coding process, but also the code, and the 
coders, and to some extent the software managers as well, to some 
form of certification.  

2.1 The Coding Process 
For flight code, JPL has adopted an Institutional Coding Standard 
[5], with which it requires compliance in all newly developed 
mission-critical software written at JPL. Most flight software, by a 
significant margin is traditionally written in the C programming 
language, and therefore the JPL coding standard for flight 
software targets this language. The coding standard deliberately 
captures only risk-related rules for which compliance can be 
verified mechanically. Other than most other coding standards, 
then, this standard has real teeth: except in rare cases, non-
compliance is not an option for our flight software developers. 
Because all rules in the standard are specifically risk related (i.e., 
we can often point at a mission anomaly or mission loss that was 
caused by the violation of the underlying principle), approval for 
non-compliance is also rarely requested or granted. An example of 
a risk-related rule in this coding standard is the abolition of all 
dynamic memory use and of recursive code. Some of the 
motivation for the rules can be traced to the Power of Ten rules, 
described in [6]. JPL further imposes fairly strict requirements on 
the code review process some of which is detailed in [7]. The 
coding standard for C is included in brief format in Appendix A, 
organized according to importance of the rules. 

JPL has also developed a coding standard for Java [8]. Java is at 
JPL mostly used for ground software. That is, software that 
executes on ground-based computers in mission operation centers, 
for example receiving telemetry from and sending commands to 
the rovers. Although this is not embedded software, its correct 
behavior is important for the correct behavior of the rovers. The 
Java coding standard is in a draft form and is not yet an 
institutional standard. It is more liberal in certain areas than the C 
coding standard. For example, it does allow dynamic memory 
allocation (use of the new construct). The coding standard for 
Java is included in brief format in Appendix B, organized 
according to subject categories. The rules represent headlines, 
which in the full standard are explained in more detail.   

2.2 The Code 
The code is rightfully subject to the strictest requirements. Flight 
code, e.g. for the MSL mission [4], is checked nightly for 
compliance with the JPL C coding standard [5], and subjected to 
rigorous analysis with four separate state-of-the-art static source 
code analysis tools [7] (at the time of writing this includes the 
commercial tools [9]: coverity, codesonar, and odasa (from 
semmle), and the research tool uno). The warnings generated by 
each of these tools is combined with the output of mission-
specific checkers that secure compliance with naming 
conventions, coding style, etc. In addition, all warnings, if any 
(there should be none), from the standard C compiler, used in 
pedantic mode with all warnings enabled, are included in the 
results that are provided to the software developers as part of the 
standard ‘scrub’ interface [7]. The developers are required to close 
out all reports before a formal code review is initiated. In peer 
code reviews, an additional source of input is provided by 
designated peer code reviewers, and added to the ‘scrub’ results.  

Furthermore, each programmer is responsible for writing unit tests 
for his/her modules. A compilation build of the entire system 
includes running all unit tests, which have to succeed for the build 
to succeed. Separately, key parts of the software design are also 
checked for correctness and compliance with higher level design 
requirements with the help of logic model checkers, such as Spin 
[10]. Training in the use of logic model checkers is tacitly 
provided via (optional) graduate-level courses taught by members 
of the JPL Laboratory for Reliable Software in the Computer 
Science Department at the California Institute of Technology. 
Approximately ten JPL employees outside the Laboratory for 
Reliable Software have so far taken and passed this course, and 
have become proficient in the use of logic model checkers for the 
analysis and verification of flight software.  

The Java coding standard in its entirety has in collaboration with 
semmle been implemented in semmle’s static code analyzer, and 
is currently being tested on JPL internal projects, including the 
MSL telemetry and command ground software. The 
implementation is being refined (in collaboration with semmle), 
driven by the results obtained during these tests. The refinement 
consists of finding the right balance between a low number of 
false positives and a high number of true negatives. Too many 
false positives will discourage use of the standard. 

2.3 The Coders 
Starting in 2010, JPL adopted a new procedure for the 
certification of flight software developers. The procedure itself is 
still subject to some revision, but once fully operational no 
software developer will be able to touch flight code (develop, 
manage, or modify) without having successfully completed a JPL 
specific Flight Software Certification course. The course consists 



of three modules, focusing on (a) computing science principles, 
(b) JPL software development standard processes, and (c) 
software risk and software vulnerabilities. Each module takes two 
full days of instruction, for a total of six days for all three modules 
combined. Each module ends with an exam that must be 
completed with a passing grade. At the time of writing, the first 
twenty software developers have successfully completed this 
course, and have received their certificates. Others have not 
passed and will have to take the course, and the exams, again. 
New classes are held several times a year, until all software 
developers have been certified. At that point, we will likely add 
refresher courses for those who are already certified, in addition to 
the basic certification course itself, to keep pace with continuing 
developments in this field. The certification course intends to 
certify that all developers of critical code are familiar with basic 
computing science theory, and standard algorithms, are intimately 
familiar with the risks inherent in the use of the programming 
languages that are typically used for flight code, and understand 
not just the letter but also the rationale for the coding standard that 
they are expected to follow. The certification course also 
introduces developers to the tools (e.g., static analyzers, code 
review tools, and unit test tools) that they will be using in flight 
software development. 

Perhaps as an aside, JPL has also instituted an (as yet non-
required) course for senior management. Senior management 
normally has deep experience with spacecraft and mission design, 
but less so with software design principles. To date, most of JPL’s 
senior management has taken and completed this course. The 
course is repeated once a year, and is by invitation only. 

 

3. REGULATORY PROCESS 
As noted in the introduction, members of our team have been 
involved in a broad range of software analysis applications, 
targeting not only aerospace but also safety-critical software used 
in automobiles, medical devices, and in the shutdown systems of 
nuclear power plants. It is perhaps noteworthy that at present there 
do not appear to be any strict regulatory requirements on the 
development of these critical types of software applications, 
neither on the code or the coders, on the organization that employs 
the coders, or on the processes that are followed in the coding 
process. 

In the automotive industry there is reasonable consensus on at 
least one set of coding guidelines: the one developed by the 
organization MiraLtd, and known as the MISRA-C Coding 
Guidelines [11]. Curiously, although many developing 
organizations have publically expressed support for these 
guidelines, there is no requirement (or verification) that they 
actually comply with them.  

Compliance with any reasonable standard, e.g., [5,6,11,8], can 
make it significantly simpler to analyze code for potential 
anomalies, and to revise, and maintain it longer term. Much the 
same is true in the medical device industry, where the FDA does 
not require compliance with any specific coding standard or 
software development process, and goes no further than to 

recommend the use of state-of-the-art static source code analyzers 
as part of software development process, without actually 
requiring evidence that this is done. Similarly, the Nuclear 
Regulatory Commission has issued no comparable requirements 
for any software used in the shutdown systems of future nuclear 
power plants, nor does it seem to have plans to do so, as a key part 
of the licensing process.  

We believe that in each of these cases the lack of requirements on 
software development is an omission that should be corrected. 
Where not following generally accepted principles for safe 
software development could be regarded as a lack of 
workmanship on the part of the developer or developing 
organization, with the potential effect of contributing to 
preventable software failure, inadequate regulation for safety-
critical software systems that we all rely on could well be 
regarded as a failure of the regulatory process. 
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APPENDICES  
 

A – JPL Coding Standard for C 
1 Language Compliance 

1  Do not stray outside the language definition. 

2  Compile with all warnings enabled; use static source code analyzers. 

2 Predictable Execution 
3 Use verifiable loop bounds for all loops meant to be terminating. 

4 Do not use direct or indirect recursion. 

5 Do not use dynamic memory allocation after task initialization. 

*6 Use IPC messages for task communication. 

7 Do not use task delays for task synchronization. 

*8 Explicitly transfer write-permission (ownership) for shared data objects. 

9 Place restrictions on the use of semaphores and locks. 

10 Use memory protection, safety margins, barrier patterns. 

11 Do not use goto, setjmp or longjmp. 

12 Do not use selective value assignments to elements of an enum list. 

3 Defensive Coding 
13 Declare data objects at smallest possible level of scope. 

14 Check the return value of non-void functions, or explicitly cast to (void). 

15 Check the validity of values passed to functions. 

           16 Use static and dynamic assertions as sanity checks. 

*17 Use U32, I16, etc instead of predefined C data types such as int, short, etc. 

18 Make the order of evaluation in compound expressions explicit. 

19 Do not use expressions with side effects. 

4 Code Clarity 
20 Make only very limited use of the C pre-processor. 

21 Do not define macros within a function or a block. 

22 Do not undefine or redefine macros. 

23 Place #else, #elif, and #endif in the same file as the matching #if or #ifdef. 

*24 Place no more than one statement or declaration per line of text. 

*25 Use short functions with a limited number of parameters. 

*26 Use no more than two levels of indirection per declaration. 

*27 Use no more than two levels of dereferencing per object reference. 

*28 Do not hide dereference operations inside macros or typedefs. 

*29 Do not use non-constant function pointers. 

30 Do not cast function pointers into other types. 

31 Do not place code or declarations before an #include directive. 

5 – MISRA shall compliance 
73 rules All MISRA shall rules not already covered at Levels 1-4. 

6 – MISRA should compliance 
*16 rules All MISRA should rules not already covered at Levels 1-4. 

 
All rules are ‘shall’ rules (must be followed), except those marked with `*’ which are ‘should’ rules (justified deviations allowed).  



 

B – JPL Coding Standard for Java 
1 – Process 

1 Compile with checks turned on. 
2 Apply static analysis. 
3 Document public elements. 
4 Write unit tests. 

2 – Names 
5 Use the standard naming conventions. 
6 Do not override field or class names. 

3 - Packages, Classes and Interfaces 
7 Make imports explicit. 
8 Do not have cyclic package dependencies. 
9 Obey the contract for equals(). 

10 Define both equals() and hashCode(). 
11 Define equals when adding fields. 
12 Define equals with parameter type Object. 
13 Do not use finalizers. 
14 Do not implement the Cloneable interface. 
15 Do not call nonfinal methods in constructors. 
16 Select composition over inheritance. 

4 – Fields 
17 Make fields private. 
18 Do not use static mutable fields. 
19 Declare immutable fields final. 
20 Initialize fields before use. 

5 – Methods 
21 Use assertions. 
22 Use annotations. 
23 Restrict method overloading. 
24 Do not assign to parameters. 
25 Do not return null arrays or collections. 
26 Do not call System.exit. 

6 - Declarations and Statements 
27 Have one concept per line. 
28 Use braces in control structures. 
29 Do not have empty blocks. 
30 Use breaks in switch statements. 
31 End switch statements with default. 
32 Terminate if-else-if with else. 

7 - Expressions 
33 Restrict side effects in expressions. 
34 Use named constants for non-trivial literals. 
35 Make operator precedence explicit. 
36 Do not use reference equality. 
37 Use only short-circuit logic operators. 
38 Do not use octal values. 
39 Do not use floating point equality. 
40 Use one result type in conditional expressions. 
41 Do not use string concatenation operator in loops. 

8 - Exceptions 
42 Do not drop exceptions. 
43 Do not abruptly exit a finally block. 

9 - Types 
44 Use generics. 
45 Use interfaces as types when available. 
46 Use primitive types. 
47 Do not remove literals from collections. 
48 Restrict numeric conversions. 

10 - Concurrency 
49 Program against data races. 
50 Program against deadlocks. 
51 Do not rely on the scheduler for synchronization. 
52 Wait and notify safely. 

11 - Complexity 
53 Reduce code complexity. 

 


